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Background
❖ Neural-machine interfaces (NMI) 

utilize neural activity to control 
external devices

❖A person’s thoughts or conscious 
actions generate electrical activity 
in their CNS and can be analyzed to 
recognize the person’s intentions

❖A NMI uses PR algorithms on 
electrical activity to predict 
intentions and enable intuitive 
control of external applications 

Objectives
Improve the recognition accuracies in 
the next generation of NMI that 
utilize electrode sensor arrays to 
collect richer EMG data.
❖ Utilize computationally-efficient 

spatial features (Adjacent 
features) in EMG PR algorithms 

Results Conclusion
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✓ Developed a working 
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strategies through the use of a 
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neural-machine interface
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EMG Pattern Recognition (PR)

Input Devices

• Delsys Trigno (DB2, DB3) – 2000 Hz sampling frequency
• Cometa Wireless sEMG (DB4) – 2000 Hz sampling frequency
• Myo Armband (DB5) – 200 Hz sampling frequency

Multi-Channel EMG Data

Feature Extraction

Time Domain (TD) Features
Robust characteristics of EMG signals
• MAV – Mean Absolute Value
• RMS – Root Mean Square
• W – Wavelength
• Z – Zero Crossings
• T – Sign Slope Turns

Auto Regression (AR) Features
Characteristics that capture high 
frequency components in EMG signals, 
but involves deriving a computationally 
costly time series model
• AR(6th) – Coefficients for a 6th order 

autoregression model

Adjacent Features (AF)
Spatial characteristics that map the 
patterns of activity in motor unit 
action potentials (MUAPs)
• MADT_dn0 – Mean absolute 

difference of two windows of data 
from two adjacent electrodes in the 
transverse direction

Features were extracted from 200ms windows of raw data , extracted every 100ms

Machine Learning & Pattern Recognition

• Linear Discriminant Analysis (LDA) – Reduces 
dimensionality of feature matrix while minimizing 
loss to class discriminatory information
▪ Projects data onto a lower dimensional space to 

avoid overfitting
▪ Low computational cost to make predictions

Methodology
Offline Analysis

• Database Analysis
o Ninapro (DB2-5)
o CapgMyo (DB-B)

• An LDA PR algorithm 
was trained to 
recognize 8 hand 
gestures

External Applications

Offline Analysis

Scaled Time Domain (TD) Features – Normalization of the intensity-based features
• SMAV/SRMS – Scaled MAV/RMS calculated by dividing the MAV/RMS of each channel by the average MAV/RMS across all channels

Real-Time Analysis

❑ At higher sampling frequencies, AR feature sets achieved higher recognition accuracies
❑ At lower sampling frequencies, AF feature sets performed best

o Combining AF and scaled intensity (SMAV) achieved higher performance
❑ A mixed feature set consisting of TD and AF features achieved robust recognition 

accuracies within 1% of the highest performing feature sets across all tests performed

❑ A Myo Armband collected EMG data from a user’s forearm 
muscles, while performing 8 hand gestures

❑ A MyoHMI Android App collected that EMG data and 
extracted the selected mixed feature set from EMG data

❑ An LDA algorithm was trained to recognize hand gestures 
based on unique patterns in the mixed feature set 

❑ Predictions on the user’s current hand gesture were used to 
control a 3D-printed robotic arm

Real-Time Analysis
• Evaluate robustness 

and delay in real-
time application
o Myo Armband
o MyoHMI mobile 

Android App
o HACKberry Arm


