1. **Course number and name**
 ENGR 441: Fundamentals of Composite Materials

2. **Credits and contact hours**
 3 credit hours: two 75-minute lecture sessions/week

3. **Instructor’s or course coordinator’s name**
 Instructor: Kwok Siong Teh, Associate Professor of Mechanical Engineering
 Course coordinator: Kwok Siong Teh, Associate Professor of Mechanical Engineering

4. **Text book, title, author, and year**
 (No textbook)

 c. **other supplemental materials**
 (none)

5. **Specific course information**
 g. **brief description of the content of the course (catalog description)**

 h. **prerequisites or co-requisites**
 Math 245: Elementary Differential Equations & Linear Algebra, and
 Engr 309: Mechanics of Solids

 i. **indicate whether a required, elective, or selected elective course in the program**
 Upper Division Technical Elective for Civil Engineering and Mechanical Engineering

6. **Specific goals for the course**
 g. **specific outcomes of instruction, ex. The student will be able to explain the significance of current research about a particular topic.**
 - The student will demonstrate an ability to describe and solve problems on atomic arrangements, geometry of imperfections, and atomic diffusion in solids.
 - The student will demonstrate an ability to describe and solve problems on mechanical and electrical behavior of materials.
 - The student will demonstrate an ability to submit homework solutions in proper engineering format.
 - The student will demonstrate an ability to describe and solve problems on the distinguishing properties of metals, plastics and ceramics.
• The student will demonstrate a familiarity with the effects of thermal, mechanical, and chemical treatments on properties.
• The student will demonstrate an ability to experimentally determine mechanical and electrical properties of materials.
• The student will demonstrate an ability to make oral presentations and write a technical report.

h. explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course.
Course addresses ABET Student Outcome(s): a, b, c, d, e, g, h, i, j, k.

7. Brief list of topics to be covered
• Introduction to composites: nomenclature, definitions, advantages, applications.
• Fiber Materials (polymer, metal, ceramic, carbon)
• Matrix Materials (polymer, metal, ceramic, carbon)
• Stress-Strain Tensors and Transformation
• Long Fiber-Reinforced Lamina: Mechanical Properties
• Long Fiber-Reinforced Laminate Plate Theory and Design
• Strength Theories
• Manufacturing Processes
• Test Methods
• Aligned and Non-Aligned Short Fiber-Reinforced Composites
• Failure Modes - Fracture, Fatigue, Delamination
• Thermomechanical Properties
• Sandwich Panels
• Particle-Reinforced Composites
• Metal and Ceramic Matrix Composites
• Nanocomposites
• Case Studies and Applications