1. **Course number and name**
 ENGR 378: Digital System Design

2. **Credits and contact hours**
 3 credit hours; one 100-minute lecture session/week and one 2-hour-45-minute lab session/week

3. **Instructor’s or course coordinator’s name**
 Instructor: Hamid Mahmoodi, Professor of Electrical and Computer Engineering
 Course coordinator: Hamid Mahmoodi, Professor of Electrical and Computer Engineering

4. **Text book, title, author, and year**

 a. **other supplemental materials**
 (none)

5. **Specific course information**
 a. **brief description of the content of the course (catalog description)**
 CMOS digital circuits and their electrical properties. Logic circuit design with functional units.
 Algorithmic sequential machine design. Design with programmable logic devices. Hardware description
 and simulation language.

 b. **prerequisites or co-requisites**
 grade of C- or better in ENGR 356

 c. **indicate whether a required, elective, or selected elective course in the program**
 Required for Computer Engineering; elective for Electrical Engineering.

6. **Specific goals for the course**
 a. **specific outcomes of instruction, ex. The student will be able to explain the significance of current
 research about a particular topic.**
 • The student will demonstrate an ability to analyze combinational and sequential circuits.
 • The student will demonstrate an ability to design combinational and sequential circuits.
 • The student will demonstrate knowledge of structural, dataflow, and behavioral modeling of digital
 system.
 • The student will demonstrate knowledge of Hardware Description Language (HDL) for digital system
 design and simulation.
 • The student will demonstrate a skill in using software tools.
 • The student will demonstrate a working knowledge of programmable logic devices
 • The student will demonstrate a skill in using tools for digital design with programmable logic devices.
b. explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course.
Course addresses ABET Student Outcome(s): a, b, c, e, k.

7. Brief list of topics to be covered
 • Introduction to Verilog HDL
 • Basic methods for circuit specification
 • Programmable logic devices and FPGA’s
 • Design and specification of simple circuits
 • Arithmetic unit design
 • State Machine design
 • SM Charts
 • Design with FPGAs
 • Lab: Computer-aided design and simulation tools; digital circuit verification and troubleshooting, synthesis and implementation to FPGA