1. **Course number and name**
 ENGR 357: Digital Design Laboratory

2. **Credits and contact hours**
 1 credit hour; one 2 hours and 45-minute lab session/week

3. **Instructor’s or course coordinator’s name**
 Instructor: Hamid Shahnasser, Professor of Electrical and Computer Engineering
 Course coordinator: Hamid Shahnasser, Professor of Electrical and Computer Engineering

4. **Text book, title, author, and year**
 M. Morris Mano & Michael D. Ciletti, Digital Design with an Introduction to the Verilog HDL, Fifth Ed

 a. **other supplemental materials**
 One Engr 357 Kit for each lab team (no more than 2 students/team); take voucher to pay $34 for kit at Bursar’s Office (Adm 155); pick up kit at SCI-140 with receipt from Cashier.

5. **Specific course information**
 a. **brief description of the content of the course (catalog description)**
 CMOS digital circuits and their electrical properties, Sequential and Combinational circuits design and implementation, Hands on experiments on Adders, Decoders, Latches Flip-flops, Register and Counters. Introduction to EDA tool and VHDL programming.
 b. **prerequisites or co-requisites**
 ENGR 205 or CS210 with a grade of C- or better
 c. **indicate whether a required, elective, or selected elective course in the program**
 Required for Electrical Engineering; elective for Computer Engineering.

6. **Specific goals for the course**
 a. **specific outcomes of instruction, ex. The student will be able to explain the significance of current research about a particular topic.**
 - The student will demonstrate an ability to analyze combinational and sequential circuits.
 - The student will demonstrate an ability to design and implement combinational and sequential circuits.
 - The student will demonstrate knowledge of structural, dataflow, and behavioral modeling of digital system
 - The student will demonstrate knowledge of VHDL (VHSIC Hardware Description Language) using Xilinx Software for circuit design.
 - The student will demonstrate the skill of using software tools.
 b. **explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course.**
Course addresses ABET Student Outcome(s): a, b, c, e, k.

7. Brief list of topics to be covered
 - Basic Logic Operations
 - Introduction with EDA tool
 - Introduction and implementation of Combinational Circuit Design
 - Implementation of iterative circuits such as Adders and Subtractors
 - Implementation of Decoders and Multiplexers.
 - Introduction of Latches and Flip-flops
 - Introduction and implementation of Sequential Circuit Design
 - Implementation of Registers
 - Implementation of Counters