1. **Course number and name**
ENGR 290: Introduction to PSPICE

2. **Credits and contact hours**
1 credit hours

3. **Instructor’s or course coordinator’s name**
Instructor: Hao Jiang, Associate Professor
Course coordinator: Hao Jiang, Associate Professor

4. **Text book, title, author, and year**
Web: http://www.linear.com/design/tools/software/#LTspice

5. **Specific course information**
 a. **brief description of the content of the course (catalog description)**
 Introduce students to a simple computer-aided-design (CAD) circuit design tool, PSPICE or LTSPICE, to support electronic circuit analysis.

 b. **prerequisites or co-requisites**
 ENGR 205

 c. **indicate whether a required, elective, or selected elective course in the program**
 Elective for Electrical Engineering and Computer Engineering

6. **Specific goals for the course**
 a. **Specific outcomes of instruction, ex. The student will be able to explain the significance of current research about a particular topic.**
 - To do dc, transient domain, frequency domain, noise and Monte Carlo analysis of circuits with LC, diode, BJT and MOSFETs using a PSPICE or LTSPICE circuit simulator
 - To enable students to conduct circuit analysis using a PSPICE or LTSPICE circuit simulator

 b. **Explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course**
 Course addresses ABET Student Outcome(s): b, c, k
 - Student understands what is PSPICE or LTSPICE and its use in industrial applications
 - Student knows how to simulate a circuit using a PSPICE or LTSPICE simulator.
 - Student can demonstrate how to simulate an actual circuit using a PSPICE or LTSPICE in laboratory setting

 Course addresses ABET Student Outcome(s): b, c, k

7. **Brief list of topics to be covered**
 - Dc analysis
 - Time domain analysis
• Frequency domain analysis
• Analysis on Diode circuits
• Analysis on BJT circuits
• Analysis on MOSFET circuits