1. **Course number and name**
 Engr 205 Electric Circuits

2. **Credits and contact hours**
 3 Credits

3. **Instructor’s or course coordinator’s name**
 Instructor: John Kim, Ph.D
 Course coordinator: Hao Jiang, Associate Prof. in EE

4. **Text book, title, author, and year**

5. **Specific course information**
 a. **brief description of the content of the course (catalog description)**

 Circuit analysis, modeling, equivalence, circuit theorems. Ideal transformers and operational amplifiers. Transient response of 1st-order circuits. AC response, phasor analysis, AC impedance, AC power.

 b. **prerequisites or co-requisites**

 PHYS 230 and MATH 245; MATH 245 may be taken concurrently.

 c. **indicate whether a required, elective, or selected elective course in the program**

 Required for Civil, Electrical, Mechanical and Computer Engineering.

6. **Specific goals for the course**
 a. **specific outcomes of instruction, ex. The student will be able to explain the significance of current research about a particular topic.**

 - The student will demonstrate an ability to formulate circuit equations and solve for multiple unknowns.
 - The student will demonstrate an ability to perform transient analyses of 1st-order circuits.
 - The student will demonstrate an ability to extend resistive-circuit analysis techniques to AC circuits using phasor algebra.
 - The student will demonstrate an understanding of the i-v characteristics of sources and basic R, L, and C elements, their idealized models, and the practical limitations of such models.
 - The student will demonstrate knowledge of how to apply ideal transformer and op amp models to the analysis of basic circuit configurations.
• The student will demonstrate knowledge of how to apply circuit reduction techniques to simplify circuits or portions thereof.
• The student will demonstrate an understanding of terminology, concepts, and methodology common to engineering.
• The student will demonstrate an ability to apply a structured methodology to solve analytical as well as design-oriented problems.
• The student will demonstrate an ability to recognize inadmissible circuit configurations and unrealistic results.

b. explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course.
 Course addresses ABET Student Outcome(s): a, c, e

7. Brief list of topics to be covered
 • Electricity, signals, and circuits
 • Circuit analysis techniques
 • Network theorems and circuit modeling
 • Dependent sources, ideal transformers, amplifiers
 • Op amps and basic instrumentation applications
 • Energy-storage elements
 • Natural, forced, transient, and steady-state responses
 • Phasor algebra, impedance, and AC circuit analysis
 • Power calculations