

Electric Circuits Fundamentals

Sergio Franco, San Francisco State University

Oxford University Press, 1995
ISBN: 0-19-513613-6

First-Printing Errata (Updated July 2, 2002)

Page 34, 5th line from bottom: rewrite as: By KCL, $i_{X_{2}}=i_{X_{1}}+i_{X_{3}}=1+3 \ldots$
Page 94, end of Problem 2.38: change $0.5 R$ to $0.1 R$
Page 192, 2 d line from bottom: change i_{q} to i_{Q}
Page 243, Figure P5.47: change label from $v_{o} /(5 \mathrm{k} \Omega)$ to $v_{o} /(5 \mathrm{k})$
Page 275, 3rd line of Exercise 6.21: change 200.000 to 200,000
Page 282, Problem 6.31, 2nd line: change R_{3} to R_{2}
Page 285, Problem 6.48, 1st line: change 6.24(a) to 6.23
Page 373, Figure P8.24: change label from $k_{g} i_{X}$ to $k_{g} v_{X}$
Page 381, 4th line of Solution: change $i(t)$ to $i\left(0^{+}\right)$
Page 392, right-hand of Equation (9.32): change $\omega_{0} y(\infty)$ to $\omega_{0}^{2} y(\infty)$
Page 411, Figure 9.19(b): change the horizontal axis label from $\omega_{0} \sqrt{1-\zeta^{2} t}$ to $\omega_{0} \sqrt{1-\zeta^{2}} t$
Page 418, Problem 9.38, 1st line: change $v_{o}\left(t \geq 0^{+}\right)$to $v\left(t \geq 0^{+}\right)$
Problem 9.39, 1st line: change $v\left(t \geq 0^{+}\right)$to $v_{o}\left(t \geq 0^{+}\right)$
Page 512, Problem 11.25, 2nd line: change C to A
Page 513, end of Problem 11.29: append: and such that $|\boldsymbol{V}| /|\boldsymbol{I}| / 10 \Omega$
Page 575, Problem 12.76, 4th line: change V to Ω
Page 603, and of Problem 13.15: change $\boldsymbol{\theta}_{i}$ to $\boldsymbol{\theta}_{v}$
Page 603, Problem 13.23: in the 1st line, change $500-\mathrm{mH}$ to $500-\mu \mathrm{H}$
in the 3rd line, change $16 \mathrm{Mrad} / \mathrm{s}$ to $1 \mathrm{Mrad} / \mathrm{s}$
Page 618, Fig. 14.4: the abscissa of the conjugate zero pair should be -2 instead of -3
Page 654, Equation (14.99a): change $\sqrt{1-\zeta^{2}}$ to $\sqrt{1-2 \zeta^{2}}$
Page 655, 8th line from bottom: change $10 \sqrt{1-0.25^{2}}=9.68$ to $10 \sqrt{1-2 \times 0.25^{2}}=9.35$
Page 676, Problem 15.56, in the denominator change $10^{4} s$ to $10^{3} s$
Page 715, Equation (15.39): change ($p \xi$) to $p(\xi)$
Page 809, Problem 16.40, 1st equation term: change $d y_{1}^{2}(t) / d t^{2}$ to $d^{2} y_{1}(t) / d t^{2}$
ANS-6, 2.39: Refer v_{O} to the negative terminal of the source.
ANS-14, 8.49: change $10 \exp [-t /(50 \mu \mathrm{~s})]$ to $10\{\exp [-t /(50 \mu \mathrm{~s})]-1\}$
ANS-16, 11.37: change existing line to: Both 2.5/-90 ${ }^{\circ} \mathrm{V}$ (+ @ top)
ANS-17, 11.53, 2nd line: change 18 to 30 ; 11.69: change (a) cos to (a) $9.995 \cos$ change (c) $99.95 \cos$ to (c) $99.995 \cos ; \mathbf{1 2 . 1}$: change mW to W throughout.
ANS-18, 12.29: change existing line to $278.7+j 40.05 \mathrm{~m} \Omega ; 0.9898$, lagging
12.31: change (a) 0.8688 to (a) 0.8688 , lagging

ANS-19, 12.69: change as: (a) 0.6130 , leading; (b) 0.1833 , leading
12.71: change -614.5 to 614.5 W ; end of 13.15: change -24.84° to -25.84°

ANS-22, 14.51: in (b) change 48.99 to 47.96
ANS-27, 16.31, part (c): change $u(t-1)$ to $u(t-\pi)$

