This document contains the Errata for *Design with Op Amps and Analog ICs*.

The Errata are shown for the 4th Edition, 3rd Edition, and 2nd Edition, as follows:

For the 4th Edition Errata, scroll down to Page 2.

For the 3rd Edition Errata, scroll down to Page 3.

For the 2nd Edition Errata, scroll down to Page 4.

If you find any additional errata, please let me know, so I can update this document. My email is:

sfranco@sfsu.edu

Thanks, Sergio Franco

4th Edition

3rd Edition

2nd Edition

Design with Operational Amplifiers and Analog Integrated Circuits – 4th Edition

Sergio Franco San Francisco State University

McGraw-Hill Education, ©2015 - ISBN 0-07-232084-2

First-Printing Errata (Updated July 24, 2017)

Page 26, line before Eq. (1.49): append text as follows: but with respect to *b*, we get, for *L* sufficiently large,

Page 38, Eqs. (1.70) and (1.71); page 39, Eqs. (1.75*a*), (1.75*b*), and (1.76); p. 285, Eq. (6.17*a*): change the denominator term $(R_1 + r_o)/r_d$ to $(R_2 + r_o)/r_d$ throughout.

Page 321, Example 6.17, 2nd line: change Example 6.15 to Example 6.16.

Page 584, Fig. 11.45: change the rightmost part of the *Q* waveform as shown below in red:

Page 584, starting at the 6th line from the bottom: change "intervene, the converter adjusts *D* so as to move the average current I_L up or down until the condition $I_L = I_O$ is met." to "intervene, the average current I_L will move up or down until the condition $I_L = I_O$ is reestablished."

Design with Operational Amplifiers and Analog Integrated Circuits – 3rd Edition

Sergio Franco - McGraw-Hill, 2002 - ISBN 0-07-232084-2

First-Printing Errata (Updated January 27, 2016)

Page 35, Solution (*a*), second line should be as: V/V; $R_n = (10^5 + 75)/(1 + 2 \times 10^5) \approx 0.5 \Omega;...$ **Page 47, Problem 1.3, 1st line: change** A_{oc} to A_r **Page 104, Fig. P2.54: swap the resistance labels** R and $R(1 + \delta)$

Page 113, Eq. (3.11*a*): change $|H_1| - |H_2|$ to $|H_1| / |H_2|$

Page 114, Eq. (3.13*c*): change $|1/H_1|$ to |1/H|

Page 137, Example 3.11, Solution (*b*): change 136.69° to -136.69° (twice), and 46.69° to 133.31° (twice)

 A_{\min}

Page 145, expression for V_{HP}/V_i in the 3rd line after Eq. (3.78): rewrite as

$$\frac{V_{\rm HP}}{V_i} = -\frac{R_5}{R_3} \frac{\frac{R_4 R_6 C_1 R_7 C_2}{R_5} s^2}{\frac{R_4 R_6 C_1 R_7 C_2}{R_5} s^2 + \frac{R_4 R_7 C_2 (1 + R_5 / R_3 + R_5 / R_4)}{R_5 (1 + R_2 / R_1)} s + 1}$$

Page 162, Fig. 4.2b: change arrow as shown on the right:

Page 162, text preceding Eq. (4.2): change b_2 to b_1 , and change b_3 to $b_2 = b_3$ Page 205. Problem 4.8. 2nd line from the order shares 11.080 Hz to 11.080 Hz

Page 205, Problem 4.8, 2nd line from the end: change 11.080 Hz to 11.080 kHz

Page 285, Eq. (6.38), last denominator term: change $-(f/f_t)^4$ to $+(f/f_t)^4$

Page 295, 2nd line: change -10 dec/dec to -1 dec/dec

Page 351, last line: change $(\sqrt{5} - 1)$ to $(\sqrt{5} - 2)$

Page 352, right edge of Fig. 8.4 (b): change 45° to -45°

Page 358, Fig. 8.9: swap "+" and "-" inside the op amp

Page 362, Solution: change $f_x = 10^7/(...)$ to $f_x = 2 \times 10^7/(...)$

Page 363, after Eq. (8.20*a*): change $1/2\pi R_2 C_f$ to $(1 + R_1/R_2)/(2\pi R_2 C_f)$

- **Page 364, Solution** (*b*): change $1/2\pi R_2 C_f \cong 140 \text{ kHz to } (1 + R_1/R_2)/(2\pi R_2 C_f) \cong 210 \text{ kHz}$; in the denominator of A(jf), change 140 to 210
- Page 385, line after Eq. (8.36): change Problem 8.46 to Problem 8.48; Example 8.16, second line: change 99 k to 99 kΩ

Page 386, 4th **line: change** $a_0 = a_{01}(...)$ **to** $a_0 = a_{10}(...)$

Page 451, expression after Eq. (10.2): change $exp[(t - t_0)$ to $exp[-(t - t_0)]$. Ditto in the text 5 lines further down

Page 488, 4th line: change 273.2 K to 298.2 K

Page 522, Solution, 3rd line: change $V_{BE3(on)}/(R_3 + R_4)$ to $V_{BE3(on)}/R_4$; 4th line: change 160 Ω to 210 Ω , and 540 Ω to 700 Ω

Page 541, 3rd line before Eq. (11.46): change "to $t_{OFF}/2$ " to "to $t_{ON} + t_{OFF}/2$ ";

Eq. (11.48): change numerator from $I_0(1 - V_I/V_0)$ **to** $I_0/(1 - V_I/V_0)$

Design with Operational Amplifiers and Analog Integrated Circuits – 2nd Edition

Sergio Franco - WCB/McGraw-Hill, 1998. ISBN 0-07-021857-9

First-Printing Errata (Updated September 15, 1999)

Page 16, 8th and 6th line from bottom: change -4 V to -6 V

Page 30, Fig. 1.26b: interchange + and – inside op amp

Page 60, Eq. (2.2): change *R*₂ **to** *R*

Page 64, change Eq. (2.7) as: $A = (1/R) \times (a - R/r_d) / (1 + a + r_o/R + r_o/r_d)$

Page 66, Fig. 2.8*a***: change** $3 \text{ k}\Omega$ to $4.42 \text{ k}\Omega$

Page 89, Eq. (2.42*a***): change** *R*₂ to *R*

Page 98, Prob. 2.8, 3d line: change anode to cathode

Page 100, 1st line: change 2.11 to 2.12

Page 101, Fig. P2.34: interchange v_1 and v_2 ; interchange + and – inside OA_1 and OA_3 ; change the label of the 30-k Ω resistance from R_2 to R_3

Page 106, bottom line, should read: $Arg(H) = t_0 \omega$, where t_0 is a ...

Page 120, numerator of Eq. (3.29*a*): drop 1 + ; denominator of Eq. (3.29*b*): drop 2π

Page 122, 4th line after Tape Preamplifier: change *R* to *R*₁

Page 129, put the denominator of Eq. (3.46b) under a radical

Page 137, 2nd line of the Solution: change 70.71 to 11.25; 3rd line: change 69.8 to 11.3

Page 140, denominator of *Q* **in Eq. (3.69): replace** *K* **with** 2*K*

Page 141, 2^{nd} line of Solution: replace K with 2K; 3^{rd} line: replace 2.92 k Ω with 9.53 k Ω

Page 143, line before Eq. (3.74): change $H_{0BP}H_{BP}$ to $H_{0LP}H_{LP}$

Page 152, Eq. (3.95b): replace ¹/₂ with 2

Page 154, Fig. P3.3: change R_2 **to** C_2 **, and** C_2 **to** R_2 **; Prob. 3.4, 2nd line: change** upper-left **to** upper-right

Page 156, Prob. 3.20, 2nd line: change H_{0LP} to H_{0HP} and H_{LP} to H_{HP} ; 3rd line: change R_1 to R_2 and R_2 to R_1

Page 157, Prob. 3.24, 2nd line: interchange R_1 and R_2 ; Prob. 3.27: change $f_0 = 1/\sqrt{2} RC$ to $\omega_0 = \sqrt{2} / RC$

Page 180, 2^{nd} line: change R_2 to R_3

Page 206, Prob. 4.3: change seventh-order to seventh-order, 0.5-dB

Page 249, Prob. 5.19, 3rd line: change 1 MHz to 10 kHz

Prob. 5.20, 4th line: change 2CMRR_{OA(min)} to (1/2)CMRR_{OA(min)}

Page 250, Prob. 5.27: change data as follows: (*a*) $v_2 = -0.75$ V, (*b*) $v_2 = 0.30$ V, (*c*) $v_2 = 0.3$

-1.70 V, (*d*) $v_2 = -0.25$ V

Page 276, Eq. (6.23): change f_t to f_a and f_a to f_t

Page 277, Solution: insert - in $A_0 = -(1 + R_2/R_1)R = -1 V/\mu A$, and in $A(jf) = -10^6 V/A$...

Page 288, Eq. (6.38): in the last numerator change $(jf/f_t)^3$ to $j(f/f_t)^3$

Page 289, Fig. 6.27b: change rightmost R to R_1

Page 306, Prob. 6.2, 2^{nd} line: change -68° to -58°

Page 310, Fig. P6.39: change uppermost resistance from R_1 to R_2 ; Fig. P6.40: change uppermost resistance from R_2 to R_1

Page 336, 3rd line: change $E_{noe}^2/3$ to $E_{noe}^2/3^2$

- **Page 345, Prob. 7.2, 2d line: change** NEB_{HP} to Q^2 NEB_{BP}
- Page 347, Prob. 7.19, 4th line: change $4kT(R_G//R_3)$ to $4kT(R_G//2R_3)$; Prob. 7.20, 2nd line: change 7.17 to 7.19 ; Prob. 7.24, 2nd line: change $1/\sqrt{2}$ to $\frac{1}{2}$
- **Page 348, Fig. P7.34: change** *R*₁, *R*₂, ... *R_n* **to** *R*
- **Page 362, 1st line:** change $jf[2\pi \text{ to } jf/[2\pi; \text{ Figs. 8.10b and 8.13b: change } |1 \neq \beta| \text{ to } |1/\beta|$
- **Page 377, line above Eq. (8.29): replace** r_o with $r_o = 0$
- **Page 393, Prob. 8.2, 3rd line: change** T_0 o T; **Prob. 8.3, 5th line: change parts** (*a*) and (*b*) to parts (*b*) and (*c*)
- **Page 394, Prob. 8.12, 1st line: change** Fig. 8.8*a* to Example 8.2; **Prob. 8.15, 1st line: change** R_2/R_2 to R_2/R_1
- **Page 395, Prob. 8.27, 3rd line: change** -10 V/V **to** -100 V/V
- Page 397, Prob. 8.44, 1st line: change $-R_2H_{LP}$ to R_2H_{LP} ; 2nd and 3rd lines: change as follows: $f_0 = \sqrt{z_0 f_a/2\pi r_n R_2 C_n}$ and $Q = z_0 f_a/(r_n + R_2) f_0$
- Page 398, Prob. 8.51, 4th line: change as follows:
 - $1/(1+1/T) = (1 + jf/\beta_2 f_{t2})/(1 + jf/\beta_{f_{t1}} f^2/\beta_{f_{t1}}\beta_2 f_{t2})$
- **Page 422, Eq. (9.14): in the last numerator change** V_{TH} **to** V_{TL}
- **Page 458, Fig. 10.5: change** R_2 from 21.0 k Ω to 2.1 k Ω
- **Page 480, Fig. 10.24***a***: make** *C* = 2.2 nF and *R* = 90.9 kΩ
- Page 497, Fig. P10.3: interchange + and inside OA_2 ; Prob. 10.4, 2nd line: change 10 V to 5 V
- Page 498, Prob. 10.12, 1st line: change Fig. 10.11*a* to Fig. 10.12*a*
- Page 500, Prob. 10.28, 4th line: change Eq. (10.24) to Eq. (10.21)
- Page 545 & 547, Eqs. (11.45) & (11.48): change + to -
- Page 610, Prob. 10, 2nd line: change a 10-bit to a dual 10-bit
- Page 614, Eq. (13.6) and following line: change Ios to IB
- Page 643, Fig. 13.27*b*: change 2π to π
- Page 648, 6th line of the Solution: change s⁻¹ to (rad/s)/V