

Computer Engineering Self Study Report June 20, 2017
Thomas Holton (tholton@sfsu.edu) 187

1. Course number and name
CSC 220: Data Structures

2. Credits and contact hours
3 credits
Contact hours: 150 minutes of lecture sessions /week

3. Instructor’s or course coordinator’s name
Course coordinator: James Wong, Professor of Computer Science

4. Text book, title, author, and year
 Data Structures and Abstractions with Java, Frank Carrano, current edition

a. other supplemental materials
Lecture slides

5. Specific course information

a. brief description of the content of the course (catalog description)

Linear and non-linear data structures, including lists, stacks, queues, trees, tables and graphs. Recursion,
iteration over collections, sorting, searching, Big O notation and hash table.

b. prerequisites or co-requisites

grades of C or better in MATH 226 and CSC 210. MATH 227 may be taken concurrently.
c. indicate whether a required, elective, or selected elective course in the program

Required for Computer Engineering.

6. Specific goals for the course
a. specific outcomes of instruction, ex. The student will be able to explain the significance of current

research about a particular topic.

At the end of this course students will

• Be able to write Java programs in an integrated development environment
•  Utilize a debugger in software development
• Apply Data Structures and ADT concepts effectively when developing small to medium sized projects
• Write robust code utilizing exception handling language features
• Learn what and how to document each project

b. explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are
addressed by the course.
Course addresses ABET Student Outcome(s): a, b, c, e, j, k.

7. Brief list of topics to be covered

Computer Engineering Self Study Report June 20, 2017
Thomas Holton (tholton@sfsu.edu) 188

• Object-oriented programming: Object-oriented design; encapsulation and information-hiding; separation
of behavior and implementation; classes, subclasses, and inheritance; polymorphism; class hierarchies;
collection classes and iteration protocols; generic types;

• Recursion: The concept of recursion; recursive specification of mathematical functions (such as factorial
and Fibonacci); simple recursive procedures (Towers of Hanoi, permutations, fractal patterns);
implementation of recursion

• Introduction to computational complexity: Asymptotic analysis of upper and average complexity
bounds; big-O notation; standard complexity classes; empirical measurements of performance

• Fundamental computing algorithms: O(N log N) sorting algorithms
(Quicksort, heapsort, mergesort); hashing, including collision-avoidance strategies;

• Abstraction and implementation of classic data structures: lists, stacks, queues, priority queues, hash
tables, graphs, trees & balanced trees and dictionaries

