1. **Course number and name**
 ENGR 848: Design VLSI Design

2. **Credits and contact hours**
 3 credit hours; one 2-hour-45-minute lecture sessions/week

3. **Instructor’s or course coordinator’s name**
 Instructor: Hamid Mahmoodi, Assistant Professor of Computer Engineering
 Course coordinator: Hamid Mahmoodi, Assistant Professor of Computer Engineering

4. **Text book, title, author, and year**

 a. **other supplemental materials**
 (none)

5. **Specific course information**
 a. **brief description of the content of the course (catalog description)**

 b. **prerequisites or co-requisites**
 ENGR 453 or equivalent

 c. **indicate whether a required, elective, or selected elective course in the program**
 Elective

6. **Specific goals for the course**
 a. **specific outcomes of instruction, ex. The student will be able to explain the significance of current research about a particular topic.**
 - The student will be able to describe fundamental metrics used for quantitative evaluation of a design
 - The student will be able to explain basics of MOS transistors and CMOS technology
 - The student will be able to describe silicon technology scaling and trends
 - The student will be able to design using different logic styles such as complementary CMOS logic, pass-transistor logic, dynamic logic, etc
 - The student will have the skills of transistor-level analysis and design of simple and complex logic gates such as inverter, NOR and NAND gates
 - The student will be able to explain different memory elements and design sequential logic circuits such as latches and flip-flops
 - The student will be able to consider the role of interconnects in IC design
 - The student will be able to design arithmetic functional units such as adders and multipliers
• The student will be able to design memory (SRAM and DRAM)

b. explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course.
Course addresses ABET Student Outcome(s): a, b, c, d, e, g, i, j, k.

7. Brief list of topics to be covered
• Introduction to digital integrated circuits
• Design metrics
• MOS transistor
• CMOS technology
• CMOS inverter
• Interconnects
• Combinational logic gates in CMOS
• Design of sequential logic circuits
• Arithmetic building blocks
• Memory design