1. **Course number and name**
 ENGR 456 Computer Systems

2. **Credits and contact hours**
 3 credits
 Contact hours; two 75-minute lecture sessions/week

3. **Instructor’s or course coordinator’s name**
 Instructor: Xiaorong Zhang, Assistant Professor of Computer Engineering
 Course coordinator: Xiaorong Zhang, Assistant Professor of Computer Engineering

4. **Text book, title, author, and year**

 a. **other supplemental materials**
 ARM Architecture Reference Manual

5. ** Specific course information**
 a. **brief description of the content of the course (catalog description)**

 b. **prerequisites or co-requisites**
 ENGR 356 with a grade of C- or better; ENGR 213 with a grade of C- or better or CSC 210 with a grade of C or better

 c. **indicate whether a required, elective, or selected elective course in the program**
 Required for Computer Engineering, Elective for Electrical Engineering.

6. **Specific goals for the course**
 a. **specific outcomes of instruction, ex. The student will be able to explain the significance of current research about a particular topic.**
 - The student will demonstrate knowledge of the overall structure of a computing system.
• The student will demonstrate an ability to design arithmetic circuits.
• The student will demonstrate knowledge of simple and pipelined datapaths.
• The student will demonstrate knowledge of hardwired and microprogrammed control.
• The student will demonstrate knowledge of memory hierarchy and its operations.
• The student will demonstrate a good understanding of the ARM processor.
• The student will demonstrate an ability to compare performance measurements.
• The student will demonstrate knowledge of instruction formats and addressing modes.
• The student will demonstrate knowledge of the basic concepts in assembly language programming.

b. explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course.

Course addresses ABET Student Outcome(s): a,c,e.

7. Brief list of topics to be covered

System Level Organization: CPU, memory systems (main memory, cache, virtual memory), storage technologies, I/O devices & processes, busses.

Micro-Architecture Level: Data paths and components, micro-operations, memory interfacing, the fetch/execute cycle, processor control & sequencing, interrupts, rudimentary pipelining.

Instruction Set Architecture Level: Instruction types and formats, opcodes, operands, immediate values, addressing modes, flow of control, branching and procedure calls.

Assembler Language Level: Syntax, directives vs. instructions, assemblers, linkers, loaders, semantics of simple programs, stack management, procedure calls, interrupt handling.