Template for ABET course syllabi (new format)

1. **Course number and name**  
   Engr 205 Electric Circuits

2. **Credits and contact hours**  
   3 Credits

3. **Instructor’s or course coordinator’s name**  
   Instructor: Sung Hu, Ph.D  
   Course coordinator: Sung Hu, Ph.D

4. **Text book, title, author, and year**  
   
   a. **other supplemental materials**
      - *Circuits* by Fawwaz Ulaby and Michel Maharbiz, NTS Press, 2009
      - *Fundamentals of Electric Circuits* by Charles Alexander and Matthew Sadiku,  
   (Optional References)

5. **Specific course information**  
   a. **brief description of the content of the course (catalog description)**
      
      Circuit analysis, modeling, equivalence, circuit theorems. Ideal transformers and operational amplifiers. Transient response of 1st-order circuits. AC response, phasor analysis, AC impedance, AC power.

   b. **prerequisites or co-requisites**
      PHYS 230 and MATH 245; MATH 245 may be taken concurrently.

   c. **indicate whether a required, elective, or selected elective course in the program**
      Required for Civil, Electrical, Mechanical and Computer Engineering.

6. **Specific goals for the course**  
   a. **specific outcomes of instruction, ex. The student will be able to explain the significance of current research about a particular topic.**
      - The student will demonstrate an ability to formulate circuit equations and solve for multiple unknowns.
      - The student will demonstrate an ability to perform transient analyses of 1st-order circuits.
      - The student will demonstrate an ability to extend resistive-circuit analysis techniques to AC circuits using phasor algebra.
      - The student will demonstrate an understanding of the i-v characteristics of sources and basic R, L, and C elements, their idealized models, and the practical limitations of such models.
      - The student will demonstrate knowledge of how to apply ideal transformer and op amp models to the analysis of basic circuit configurations.
      - The student will demonstrate knowledge of how to apply circuit reduction techniques to simplify circuits or portions thereof.
Template for ABET course syllabi (new format)

- The student will demonstrate an understanding of terminology, concepts, and methodology common to engineering.
- The student will demonstrate an ability to apply a structured methodology to solve analytical as well as design-oriented problems.
- The student will demonstrate an ability to recognize inadmissible circuit configurations and unrealistic results.

b. explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course.
   Course addresses ABET Student Outcome(s): [a,c].

7. Brief list of topics to be covered
   - Electricity, signals, and circuits
   - Circuit analysis techniques
   - Network theorems and circuit modeling
   - Dependent sources, ideal transformers, amplifiers
   - Op amps and basic instrumentation applications
   - Energy-storage elements
   - Natural, forced, transient, and steady-state responses
   - Phasor algebra, impedance, and AC circuit analysis
   - Power calculations