1. **Course number and name**
 ENGR 449: Communication Systems

2. **Credits and contact hours**
 3 credit hours; three 50-minute lecture sessions/week, or two 1-hr-15-minute lecture sessions/week, depending on semester

3. **Instructor’s or course coordinator’s name**
 Instructor: Prof. Murthy
 Course coordinator: Tom Holton, Ph.D.

4. **Text book, title, author, and year**

 a. other supplemental materials

5. **Specific course information**
 a. **brief description of the content of the course (catalog description)**

 b. **prerequisites or co-requisites**
 A grade of C- or better in ENGR 305

 c. **indicate whether a required, elective, or selected elective course in the program**
 Required for Electrical Engineering
 Elective for Computer Engineering

6. **Specific goals for the course**
 a. **specific outcomes of instruction, ex. The student will be able to explain the significance of current research about a particular topic.**
 - The student demonstrates an understanding of mathematics associated with amplitude modulation and demodulation.
• The student can sketch signal waveforms before and after amplitude modulation both in the
time and frequency domains.
• The student can design a demodulator given a modulator.
• The student understands SSB, VSB, and QAM.
• The student is able to compare modulation schemes regarding their power and bandwidth
efficiencies.
• The student demonstrates an understanding of mathematics associated with frequency and
phase modulation and demodulation.
• The student can sketch signal waveforms before and after frequency modulation both in the
time and frequency domains.
• The student can design an FM demodulator.
• The student demonstrates an understanding of how sampling rate is related to aliasing in
converting analog signals to discrete samples.
• The student understands the advantages of digital communications over analog
communications.
• The student understands how PCM is encoded and the reasons behind the resulting bit rate.
• The student understands why digital data are line coded and pulse shaped before
transmission.
• The student understands why ISI is caused by pulse shaping and what the Nyquist filter is.
The student can perform scrambling and is able to design a descrambler given the scrambler.
• The student understands equalization and is able to design a linear equalizer. The student
understands digital modulation.
• The student can sketch the waveforms of digitally modulated signals for ASK, PSK, FSK,
and digital QAM.
• The student is able to draw the constellation diagrams for BPSK, 8PSK, 16 PSK, 4QAM, 16
QAM.
• The student knows cumulative distribution function and probability density function and their
properties.
• The student can analyze the performance of the binary symmetric channel.
• The student can analyze the performance of digital modulation (e.g. BPSK) in an AWGN
channel.
• The student can perform block coding and decoding.
• The student can obtain the parity-check matrix given the generator matrix and vice-versa.
The student can construct the trellis diagram of a convolutional code
• The student can perform decoding of convolutional codes using the Viterbi algorithm.

explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes
are addressed by the course.
Course addresses ABET Student Outcome(s): a, b, c, e

7. Brief list of topics to be covered

• Amplitude modulation and demodulation
• Frequency modulation and demodulation
- Sampling theorem, PAM and PCM
- Line coding and pulse shaping
- Digital modulation techniques: BPSK, QPSK and FSK
- Probability and random processes. Gaussian and uniform distributions.
- Error-correcting coding. Linear and convolutional codes
- Advanced communications technologies