1. **Course number and name**
 ENGR 427: Wood Structures

2. **Credits and contact hours**
 3 credit hours; three 50-minute lecture sessions/week, or two 1-hr-15-minute lecture sessions/week, depending on semester

3. **Instructor’s or course coordinator’s name**
 Instructor: Wenshen Pong, Professor of Civil Engineering
 Course coordinator: Wenshen Pong, Professor of Civil Engineering

4. **Text book, title, author, and year**

 a. **other supplemental materials**

5. **Specific course information**
 a. **brief description of the content of the course (catalog description)**
 Design procedures and specifications of wood members subjected to tension, compression, flexure and combined bending and axial forces. Design building codes and seismic provisions of wood structures.

 b. **prerequisites or co-requisites**
 ENGR 323: Structural Analysis

 c. **indicate whether a required, elective, or selected elective course in the program**
 Elective for Civil Engineering

6. **Specific goals for the course**
 a. **specific outcomes of instruction, ex. The student will be able to explain the significance of current research about a particular topic.**
 - The student will demonstrate knowledge of wood structural design criteria. The student will demonstrate knowledge of wood structural behavior when wood is subjected to bending, axial load and torsion.
 - The student will demonstrate knowledge of whether optimum design has been achieved.
 - The student will demonstrate knowledge of wood structural design procedures.
 - The student will demonstrate knowledge of the Allowable Stress Design method.
 - The student will demonstrate knowledge of the design of columns.
 - The student will demonstrate knowledge of the design of beams.
 - The student will demonstrate knowledge of the design of connections.
• The student will demonstrate knowledge of the design of shear walls.
• The student will demonstrate skill in solving practical engineering problems through project assignments.
• The student will demonstrate an understanding of the design building codes and the background of codes.
• The student will demonstrate skill in applying codes and specifications to design wood structural members.

b. explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course.
Course addresses ABET Student Outcome(s): a, c, e, f, i, k.

7. Brief list of topics to be covered
• Principles of structural design
• Properties of wood and its use as engineering material
• Design loads
• Beam design
• Column design
• Wood connections
• Plywood panels
• Horizontal diaphragms
• Combined bending and axial load
• Shear walls
• Nailed and stapled connections.
• Seismic design provisions